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approxinate expression 

(5.6) 

is the estimate in (5.6). 
For Ix j< I, series (4.4) converges in the mean-square sense. If we use the asymptotic 

properties of the eigenvalues h, and the eigenfunctions z,,,(n,v) as m+ -I- CQ, then the standard 
technique of mathematical physics enables us to separate the singularities at the body 
boundary and to improve the convergence of the series, A mure detailed study of the near 
velocity field would make it possible to determine the distortions to the body shape by the 
hypothesis of the possibility of approximating the velocity profile at the body boundary by 
that of a weightless fluid flowing past. This question is not discussed inthepresent paper. 
Here we merely remark that in the arrangement discussed the streamline which corresponds to 
the body remains closed, and the area bounded by this streamline equals the area of the body. 
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ANISOTROPIC TURBULENCE IN THE FLOW OF AN INCOMPRESSIBLE 
FLUID BETWEEN PARALLEL PLANE WALLS' 

V.A. BABKIN 

It is shown that ir. the region adjacent to a solid wall a Newtonian fluid 
in turbulent flow can be regarded as an oriented Ericsson-Leslie fluid 
whose defining constants are subject to certain conditions. The 

logarithmic velocity profile is obtained from the solution found if the 
molecular viscosity is ignored, when the distance from the wall is small. 

1. Consider the confined turbulent flow of an incompressible Newtonian fluid between 
plane parallel walls in the absence of mass forces. The coordinate system consists of an 2 - 

axis directed along the flow, and a y-axis perpendicular to the walls. The wall equation is 
y = * h. 

The Prandtl semi-empirical theory of the mixing length, and numerous experiments show 

that in the vicinity of a solid wall the longitudinal averaged velocity u has the following 
logarithmic profile: 

(1.1) 
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where D,, = (T, / p)lh is the dynamic velocity, ~,isthemodulus ofthetangential stress an thewall, 

p is the density of the fluid, and x is Karman's COnStanta 

It will be clear from what follows that the profile (1.1) is obtained if the turbulent 
fluid is regarded as an anisotropic fluid whose physical properties are defined by an 
orientation vector n, see /l - 3/. 

In a turbulent flow, the Newtonian fluid becomes anisotropic (/4-6/), and close to a 
solid wall it has a structure formed by the system of vortices referred to as A-vortices, 
/6/. The A-vortex has an apex which is the point most distant from the wall, and two 
branches which run to infinity inthedirection of the flow. As the distance between the 
branches and the apex increases, they approach the wall, and the angle between them and the 
flow direction tends to zero. Although some vortices may depart from the wall, an over- 
whelming number are situated in the wall region, which we denote by 6. 

We will use the Ericsson-Leslie model to describe the turbulent fluid /l - 3/, assuming 
that the unit vector II describes the direction of the vortex line. Although this model was 
constructed for nematic crystals, it can be seen from the structures of the relevant equations 
that it can be used for other fluid media whose properties are characterized by the orientation 
vector. 

Suppose that we are given the steady flow of an incompressible fluid where the body 
forces can be ignored. Assuming that 

u, = U (y), VU = v, = 0 (1.2) 
n = { cos 6 (y), sin 6 (y). 0) (1.3) 

we can obtain (see /l/) the following equations of motion of an oriented fluid between parallel 
plane walls (the prime denotes differentiation with respect to y): 

r=!J ' = +'Cb, Tyy' = 0 (1.4) 

PXL. 2 g, = 0, pug’ - g, = @ (1.5) 

Here v,, cu. cz are the components of the averaged velocity, Tij (i, j = x, y, z) are the 
tensions, p is the pressure, and 8 is the angle between the reference vector and the s-axis. 
The generalized tensions pij and the inner volumetric force g (gr,g,,gz) are dynamicquantities 
characteristic for an oriented fluid, which define the variation of the orientation vector /l, 
^I 

A/. 
As a consequence of (1.2), the discontinuity equation holds identically. The quantities 

in (1.4) and (1.5) are determined by the following formulae: 

2T," = 12~~ sin? 6 co+8 - (p5 - p?) sin? 8 2- (ps -j- p6) c0s2e+ (1.r;) 
Al uf 

T YY = --p - (k,, ~098 - k,, sinz8j 6'; - sin e cos e [u,sin'e + 

1 2 (.uz 7 ps t US - PC!1 u' 

pxu = p2 cos e - k2 sin e - (k,, - k2?) sin3 e] e' 

Pvv = f$ sin e -: Ik,, cos e T (ka3 - k,,) ~0s 8 sinze] 8' 

g, = 1' co8 e - p,e’ sin e T I:2 (I., - iI) U’ sin e 

g, = y sin 8 - file' cos e - (k,, - kz2) 8" sin e Y Ii, (k, + 1.~ K' COT 8 

where i.,, )i*, pi.. ., pi. k,,, k,,. k,, are the defining constants in the Ericsson-Leslie model, and 

$1 and p are undetermined constants in the model. 
The constants of the Ericsson-Leslie model, in particular those which occur in Eqs.(l.G), 

are connected by the following relations (see /2/): 

k,, > 0, k:: 10. k,, > 0. ! k,,I < Ii,,. I k,, - k,, - !i,,/ <k,, (1.i) 

P2 -I- Ps = Ps - Ps. lb > 0. 2P1 7 3p4 T 2p, i 2p, > 0, 
2P, + P5 - P6 2 0. - 4)“, Gp, 7 p5 + p’s) > (p2 + ps -?Q 
A, = k - p3, h = p5 - jb 

On substituting into Eqs.Cl.5) the last four expressions in (1.6), we obtain the equation 
which is satisfied by the angle 8, 

due (I (e) 8.2) - (i.l - 2.: cos 28) Up = 0 

f(e) = k,, ~0s: e - Ii,, sin* e 
(1.8) 

Let US find the conditions which, in addition to (1.7), should be satisfied by the 
constants of the Ericsson-Leslie model 
the wall should have the form (1.1). 

in order that the velocity profile in the vicinity of 
As in the Prandtl theory of the mixing length, we 

assume that next to the wall, T," = -T,. Then the first equation in (1.6) takes the form 
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8: 

g(0)u’= -T, 
(1.9) 

Zg@)= 2p1 sin28 c&e 1;(p5 - ~2)sin2 0 + (Ps + pe) Cos'B + p, (i.iO) 

Eqs.(l.B) and (1.9) give the following differential equations for determining the angle 

If the velocity u is defined by Eq.(l.l), on finding u'from 
into (1.9), we obtain an algebraic equation for determining 8, 

g (0) = pxr* (II - IY I) sgn Y 

By its nature, (1.12) is obviously the integral of equation 

If we substitute the derivative (1.13) into Eq.(l.ll), then 

(1.11) 

(1.1) and substituting it 

(1.12) 

(1.11). By Eq.(l.lZ), 

(1.13) 

clearly the left-hand side 
of it will be an odd function, and the right-hand side an even function of 8. Thus, to 
transform Eq.(l.ll)into an identity when (1.13) is substituted, it is necessary and sufficient 
that both sides vanish. Hence 

k,, = k,, = 0, i., = L? = 0 (1.1;: 

By Eq.(1.14), relations (1.7) give 

pz = 113 = 0. pLs = ps. k,, = - kc: (1.15) 

Eqs.(1.14! and (1.15) establish those ccnstraints which must necessarily be satisfied by 
the coefficients of the defining equations so ??!a: the velcoity profile is logarithmic. As 
a model of a turbulent fluid we take the Ericsson-Leslie model of the oriented fluid (see /i, 
2/) in which the constants satisfy conditions (1.14) and (1.15), In this model, taking into 
account Eqs.(l.Z) and (1.3) we express the tensions in the flow moving between the plane 
parallel walls, in the form 

r xs= -p ;- U' (pI COG 8 T p5) sin 8 cos e (1.16) 
T YY = - p -; U’ (pl sin? e T p5) sin e COF 8 
Txv = Tyl = 21' [yl sin' 61 ~0s~ H - I,* (p, -+ p&J 
T,, = -p. T,, = T,,= Ty:= TzL - -0 

As in /5/', the the tensions TII. Ty; Tz2 are al? different. 

2. Let us find the velocity profile for a turbulent flow between plane'parallei walls. 
For this we shail solve the system of Eqs.(1.4!-(1.6) taking 
and (1.15). 

into account conditions (1.141 
The system reduses to the following equations: 

g (8) U' = - T,Y jr. T, = - h@'b (2.1) 
ks2 sin 8 cos 00" - k,? (1 - 3 sin? 6) 8" - *p = 0 (2.") 
g (e) = pl sin* e ~09 e - pO. 2p. = pp i v's (2.3) 

We formulate the boundwy conditions for the function 8 (Y) in conformiQ with /6/: 

8 (ii) = e (- h) = 0 (2.i) 

The vslocit-; u @) sho~cl5 satisfy the condition of adhesion at the wall 

U (i?) = U (- h) = 0 (2.5) 

If y = 0. integrating Eq.l.2.2) once we obtain 

sin' e ~051 ee@ = B (2.6) 

where B is the integration constant. If @[* is the angle of inclination of the orientation 
vector at the tOi bo-ndar;' Y = -+- (Il - E), which is adjacent to the walls of the A-vortex 

layer of thickness 6 (see /6/j, and &' is the corresponding derivative, then 

B = et sin? 13, COCK eO (2.7) 

Since the flow is symmetrical about the plane y =o, we shall confine ourselves to 
examining the flow in the upper half-plane: O< y f h. Then integration of (2.6!, with 
boundary conditions (2.41, yields 
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case = t, t = [I -3 I/E (h - @)I ‘!* (2.8) 

The intesration of (2.1) where the function g(8) is defined by formula (2.3) results in 
the following-velocity profile: 

(a = po’pl, 2q* = 1 + 1’iTG, q > 0) 

The constant C is found from the boundary condition (2.5) 

(2.9) 

-g-J++ (2.10) 

Formulae (2.9) and (2.10) give the desired velocity distribution for the above model of 
a turbulent flow in the segment (h - 6)<y<h. We will show that the logarithmic velocity 
profile (1.1) is obtained from this equationifwe make the assumption which is usually made 
in deriving formula(l.l'(see /7/J. 

The function g(8) represents the effective viscosity of a turbulent fluid, and at the 
same time, Ilo = g (0). Thus, pa is the viscosity directly at the wall and is essentially 

the coefficient of molecular viscosity. If we ignore the viscosity u,, as compared with the 
turbulent viscosity p, sin?8 cos*e (this means that a = 0 and q= I), then in the vicinity 

of the wall, where the differences h - yand 1 -i are small and, therefore, the main term in 
formula (2.9) is ln(1 -t), the velocity profile takes the form (l.l), where 

x = 2k, (Qx,))': (2.11) 

(it is of interest to note that in this case the boundary condition (2.5) cannot any longer be 
satisfied, and the constant C can be found by introducing the concept of a laminar sublayer, 
see /7/). 

Thus, Karman's constant x proves to be connected with the parameters of the turbulent 
flow. 

The author expresses his gratitude tc V.N. Nikolaevskii for his interest and for 
constructive criticism. 
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